Tutorial - Part 3: Forcing A Roundtrip | Index | Tutorial - Part 5: Capturing Video Frames
In this tutorial we show how to use a stream to play a tone.
Let's take a look at the code before we break it down:
#include <math.h>
#define M_PI_M2 ( M_PI + M_PI )
#define DEFAULT_RATE 44100
#define DEFAULT_CHANNELS 2
#define DEFAULT_VOLUME 0.7
struct data {
double accumulator;
};
static void on_process(void *userdata)
{
struct data *data = userdata;
int i, c, n_frames, stride;
int16_t *dst, val;
return;
}
return;
stride = sizeof(int16_t) * DEFAULT_CHANNELS;
for (i = 0; i < n_frames; i++) {
data->accumulator += M_PI_M2 * 440 / DEFAULT_RATE;
if (data->accumulator >= M_PI_M2)
data->accumulator -= M_PI_M2;
val = sin(data->accumulator) * DEFAULT_VOLUME * 16767.f;
for (c = 0; c < DEFAULT_CHANNELS; c++)
*dst++ = val;
}
}
.process = on_process,
};
int main(int argc, char *argv[])
{
struct data data = { 0, };
uint8_t buffer[1024];
"audio-src",
NULL),
&stream_events,
.channels = DEFAULT_CHANNELS,
.rate = DEFAULT_RATE ));
params, 1);
return 0;
}
#define PW_ID_ANY
Definition: core.h:83
#define PW_KEY_MEDIA_TYPE
Media.
Definition: keys.h:438
#define PW_KEY_MEDIA_ROLE
Role: Movie, Music, Camera, Screen, Communication, Game, Notification, DSP, Production,...
Definition: keys.h:444
#define PW_KEY_MEDIA_CATEGORY
Media Category: Playback, Capture, Duplex, Monitor, Manager.
Definition: keys.h:441
#define pw_log_warn(...)
Definition: log.h:163
struct pw_main_loop * pw_main_loop_new(const struct spa_dict *props)
Create a new main loop.
Definition: main-loop.c:80
void pw_main_loop_destroy(struct pw_main_loop *loop)
Destroy a loop.
Definition: main-loop.c:90
int pw_main_loop_run(struct pw_main_loop *loop)
Run a main loop.
Definition: main-loop.c:139
struct pw_loop * pw_main_loop_get_loop(struct pw_main_loop *loop)
Get the loop implementation.
Definition: main-loop.c:113
void pw_init(int *argc, char **argv[])
Initialize PipeWire.
Definition: pipewire.c:580
#define PW_DIRECTION_OUTPUT
Definition: port.h:67
struct pw_properties * pw_properties_new(const char *key,...) 1
Make a new properties object.
Definition: properties.c:102
int pw_stream_connect(struct pw_stream *stream, enum pw_direction direction, uint32_t target_id, enum pw_stream_flags flags, const struct spa_pod **params, uint32_t n_params)
Connect a stream for input or output on port_path.
Definition: stream.c:1799
struct pw_stream * pw_stream_new_simple(struct pw_loop *loop, const char *name, struct pw_properties *props, const struct pw_stream_events *events, void *data)
Definition: stream.c:1546
struct pw_buffer * pw_stream_dequeue_buffer(struct pw_stream *stream)
Get a buffer that can be filled for playback streams or consumed for capture streams.
Definition: stream.c:2254
int pw_stream_queue_buffer(struct pw_stream *stream, struct pw_buffer *buffer)
Submit a buffer for playback or recycle a buffer for capture.
Definition: stream.c:2281
#define PW_VERSION_STREAM_EVENTS
Definition: stream.h:337
void pw_stream_destroy(struct pw_stream *stream)
Destroy a stream.
Definition: stream.c:1608
@ PW_STREAM_FLAG_MAP_BUFFERS
mmap the buffers except DmaBuf
Definition: stream.h:385
@ PW_STREAM_FLAG_AUTOCONNECT
try to automatically connect this stream
Definition: stream.h:380
@ PW_STREAM_FLAG_RT_PROCESS
call process from the realtime thread.
Definition: stream.h:387
static struct spa_pod * spa_format_audio_raw_build(struct spa_pod_builder *builder, uint32_t id, struct spa_audio_info_raw *info)
Definition: format-utils.h:108
#define SPA_AUDIO_INFO_RAW_INIT(...)
Definition: raw.h:307
@ SPA_PARAM_EnumFormat
available formats as SPA_TYPE_OBJECT_Format
Definition: param.h:53
@ SPA_AUDIO_FORMAT_S16
Definition: raw.h:114
#define SPA_POD_BUILDER_INIT(buffer, size)
Definition: builder.h:82
a buffer structure obtained from pw_stream_dequeue_buffer().
Definition: stream.h:210
struct spa_buffer * buffer
the spa buffer
Definition: stream.h:211
Events for a stream.
Definition: stream.h:335
A Buffer.
Definition: buffer.h:109
struct spa_data * datas
array of data members
Definition: buffer.h:113
int32_t stride
stride of valid data
Definition: buffer.h:68
uint32_t size
size of valid data.
Definition: buffer.h:66
uint32_t offset
offset of valid data.
Definition: buffer.h:63
struct spa_chunk * chunk
valid chunk of memory
Definition: buffer.h:105
void * data
optional data pointer
Definition: buffer.h:104
uint32_t maxsize
max size of data
Definition: buffer.h:103
void * data
Definition: builder.h:74
Save as tutorial4.c and compile with:
gcc -Wall tutorial4.c -o tutorial4 -lm $(pkg-config --cflags --libs libpipewire-0.3)
We start with the usual boilerplate, pw_init()
and a pw_main_loop_new()
. We're going to store our objects in a structure so that we can pass them around in callbacks later.
struct data {
double accumulator;
};
int main(int argc, char *argv[])
{
struct data data = { 0, };
Next we create a stream object. It takes the mainloop as first argument and a stream name as the second. Next we provide some properties for the stream and a callback + data.
"audio-src",
NULL),
&stream_events,
&data);
We are using pw_stream_new_simple()
but there is also a pw_stream_new()
that takes an existing struct pw_core
as the first argument and that requires you to add the event handle manually, for more control. The pw_stream_new_simple()
is, as the name implies, easier to use because it creates a struct pw_context
and struct pw_core
automatically.
In the properties we need to give as much information about the stream as we can so that the session manager can make good decisions about how and where to route this stream. There are three important properties to configure:
PW_KEY_MEDIA_TYPE
: The media type; like Audio, Video, MIDI.
PW_KEY_MEDIA_CATEGORY
: The category; like Playback, Capture, Duplex, Monitor.
PW_KEY_MEDIA_ROLE
: The media role; like Movie, Music, Camera, Screen, Communication, Game, Notification, DSP, Production, Accessibility, Test.
The properties are owned by the stream and freed when the stream is destroyed later.
This is the event structure that we use to listen for events:
.process = on_process,
};
We are for the moment only interested now in the process
event. This event is called whenever we need to produce more data. We'll see how that function is implemented but first we need to setup the format of the stream:
uint8_t buffer[1024];
#define DEFAULT_RATE 44100
#define DEFAULT_CHANNELS 2
.channels = DEFAULT_CHANNELS,
.rate = DEFAULT_RATE ));
This is using a struct spa_pod_builder
to make a struct spa_pod *
object in the buffer array on the stack. The parameter is of type SPA_PARAM_EnumFormat
which means that it enumerates the possible formats for this stream. We have only one, a Signed 16 bit stereo format at 44.1KHz.
We use spa_format_audio_raw_build()
which is a helper function to make the param with the builder. See SPA POD for more information about how to make these POD objects.
Now we're ready to connect the stream and run the main loop:
To connect we specify that we have a PW_DIRECTION_OUTPUT
stream. The third argument is always PW_ID_ANY
. Next we set some flags:
PW_STREAM_FLAG_AUTOCONNECT
: Automatically connect this stream. This instructs the session manager to link us to some consumer.
PW_STREAM_FLAG_MAP_BUFFERS
: mmap the buffers for us so we can access the memory. If you don't set these flags you have either work with the fd or mmap yourself.
PW_STREAM_FLAG_RT_PROCESS
: Run the process function in the realtime thread. Only use this if the process function only uses functions that are realtime safe, this means no allocation or file access or any locking.
And last we pass the extra parameters for our stream. Here we only have the allowed formats (SPA_PARAM_EnumFormat
).
Running the mainloop will then start processing and will result in our process
callback to be called. Let's have a look at that function now.
The main program flow of the process function is:
static void on_process(void *userdata)
{
struct data *data = userdata;
int i, c, n_frames, stride;
int16_t *dst, val;
return;
}
return;
stride = sizeof(int16_t) * DEFAULT_CHANNELS;
for (i = 0; i < n_frames; i++) {
data->accumulator += M_PI_M2 * 440 / DEFAULT_RATE;
if (data->accumulator >= M_PI_M2)
data->accumulator -= M_PI_M2;
val = sin(data->accumulator) * DEFAULT_VOLUME * 16767.f;
for (c = 0; c < DEFAULT_CHANNELS; c++)
*dst++ = val;
}
}
Check out the docs for SPA Buffers for more information about how to work with buffers.
Try to change the number of channels, samplerate or format; the stream will automatically convert to the format on the server.
Tutorial - Part 3: Forcing A Roundtrip | Index | Tutorial - Part 5: Capturing Video Frames